Generalized solutions to a linear discontinuous differential equation
نویسندگان
چکیده
منابع مشابه
Exact solutions of a linear fractional partial differential equation via characteristics method
In recent years, many methods have been studied for solving differential equations of fractional order, such as Lie group method, invariant subspace method and numerical methods, cite{6,5,7,8}. Among this, the method of characteristics is an efficient and practical method for solving linear fractional differential equations (FDEs) of multi-order. In this paper we apply this method f...
متن کاملDifferential Transform Method to two-dimensional non-linear wave equation
In this paper, an analytic solution is presented using differential transform method (DTM) for a class of wave equation. The emphasis is on the nonlinear two-dimensional wave equation. The procedures introduced in this paper are in recursive forms which can be used to obtain the closed form of the solutions, if they are required. The method is tested on various examples, and the results reveal ...
متن کاملSome Remarks on Generalized Solutions of Discontinuous Differential Equations
In this paper we consider several concepts of generalized solutions for ordinary differential equations with a discontinuous right hand side. By means of some nontrivial examples, we show that Sentis solutions, Forward-Euler solutions and Carathéodory solutions are independent notions. AMS Subj. Classification: 34A38
متن کاملGeneralized power series solutions to linear partial differential equations
Let Θ = C[e−x1 , . . . , e−xn ][∂1, . . . , ∂n] and S = C[x1, . . . , xn][[eCx1+···+Cxn ]], where C is an effective field and xN 1 · · · x N n e Cx1+···+Cxn and S are given a suitable asymptotic ordering 4. Consider the mapping L : S → Sl ; f 7→ (L1 f, . . . , Ll f ), where L1, . . . , Ll ∈ Θ . For g = (g1, . . . , gl ) ∈ Sl L = im L , it is natural to ask how to solve the system L f = g. In th...
متن کاملAnalytical Solutions to a Generalized Growth Equation
occur in the analysis of biological networks. They also include as special cases the known growth laws and probability functions, famous differential equations like those of Bessel, Chebyshev, and Laguerre, and solutions to important physical problems. These systems have no known analytical solution. However, an important subclass comprising many of the special cases mentioned above is solved. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2006
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2006.01.018